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Abstract animals”) invariably contain shared content, etc. In this
multi-image setting, the key idea is to establish relations
Joint segmentation of image sets is a challenging prob- across images, and obtain consistent segmentations that
lem, especially when there are multiple objects with vari- agree with the segmentation clues provided by all the
able appearance shared among the images in the collectionimages together. This formulation turns out to perform
and the set of objects present in each particular image is much better than single image segmentation methods [
itself varying and unknown. In this paper, we present a However, existing techniques are generally restricted to
novel method to jointly segment a set of images containingthe setting where the input images must all contain exactly
objects from multiple classes. We rst establish consistentthe same set of objects or, in other words, when all input
functional maps across the input images, and introduce aimages are similar with to other in terms of object content.

formulation that eXpIICItIy models partial Slmllarlty acCross In this paper, we consider the prob|em of Co-segmenting
images instead of global consistency. Given the optimizedy heterogenous image collection, where each input image
maps between pairs of images, multiple groups of consistenimay contain an arbitrary subset of the objects of interest.
Segmentation functions are found such that they align with Such image collections are easy to obtain (e_g', from inter-
segmentation cues in the images, agree with the functionalnet image collections). We show that the advantage of co-
maps, and are mutually exclusive. The proposed fully segmentation still applies in this challenging heterogenous
unsupervised approach exhibits a signi cant improvement setting, and that a careful formulation yields signi cant
over the state-of-the-art methods, as shown on the co-improvements over segmenting each image in isolation.
segmentation data sets MSRC, Flickr, and PASCAL. Co-segmenting a heterogenous collection poses funda-

mental challenges both in how to establish reliable relations
across the images and in how to identify objects that only
appear in subsets of the input collection. We propose to
Image segmentation is a fundamental problem in com- address these two issues using the functional maps machin-
puter vision. Traditional methods have focused on single €rYy, Which was recently introduced to the vision community
images and typically utilize segmentation clues, such asby Wang et al. (]. Unlike traditional image matching
color Changes or the presence of Sharp edgeS, to divide dechniques which establish CorreSpondenceS between image
given image into locally coherent pieces. However, such Pixels/superpixels, functional maps establish maps between
techniques do not always obtain satisfactory resulfs [ functions de ned over the images. Since image segmen-
since different parts of the same object may exhibit hetero-tation can be considered as computing binary segment
geneous appearance. indicator functions on pixels/superpixels, the functional
Recently, there has been growing interest in Map framework is particularly suitable for the purpose of
unsupervised image co-segmentation, where the segmenténage co-segmentation as it provides a handy platform for
are forced to be consistent across a collection of similar Simultaneously expressing image segmentation and image
images, e.g. 14, 6, 19, 15]. This is a common setting, as Matching desiderata.
many natural image collections contain similar or related  The proposed image co-segmentation framework con-
objects. For example, spatial and temporal coherence insists of two stages. The rst stage establishes consistent
user photo albums leads to shared entities in the imagesfunctional maps across the input images. In this stage,
photo collections of a particular theme (e.g., “grazing building upon the framework ofl[3] and [2(], we introduce

1. Introduction



a novel formulation that explicitly models partial similarity Unlike these methods, our technique provides a princi-
across images. Given the optimized consistent functionalpled framework for co-segmenting a heterogenous image
maps between the images, the second stage optimizes mukollection. We do not pose any constraints on the associa-
tiple groups of consistent segmentation functions across thetion between objects and images. Moreover, the segmenta-
image collection. Our novel two-stage approach exhibits ations of all classes are optimized simultaneously, obtaining
signi cant improvement over existing techniques on several signi cant improvement over state-of-the-art techniques.

challenging datasets. )
1.2. Notations

1.1. Related Works Throughout this paper, we use the following convention

The problem of joint segmentation has attracted a lot of for linear algebra notations. We use bold face capital
attention recently, starting with the early work by Rother characters(e.gh;B; ) todenote matrices, and use bold
et al. [14], who used color histogram matching to nd face lowercase characters (ed.s; ) to denote vectors.
common objects in a pair of images. Later on, other With k kg we denote the matrix Frobienius norm, i.e.,

kinds of features were also utilized to exploit the rela- KAke =( ; af )%. In contrast, we uskek; to denote the
tionship between image foregrounds, such as SIET,[  column-wise 1-norm, i.e., for matriA = (ai; ;am),
saliency [I], and Gabor featuress]. To address the co- kAk; = i";l kaiky.

segmentation of multiple images, Joulin et al. formulated

the co-segmentation task as a discriminative clustering2. Problem Statement and Overview

problem by clustering the image pixels into foreground and i i ) i

background §]. Vicente and colleaguesl{] proposed _ The input to our algorithm is a collection of rela_ted

to extract objects from a group of images by using an images! = fli;  ;Ing. The images are related in the
object recognition scheme to generate a pool of object-like S€Nse that each image contains one or multiple objects from
segmentations, and then selecting the most likely segmenta@n unknown set of classes. Nothing is known about these
tions using a learned pairwise consistency term. In contrast,c/asses, except their total numbér. The output consists
Chang et al. ] established an MRF optimization model, of (i) the classi cation result: a collection dfl image sets

by introducing a co-saliency prior as a hint about possible & f L ;Ng1 kM, collecting the images

consistent foreground locations. The proposed model wasthat contain one object (or more) of each class, and (ii) the
then optimized using graph cut techniques. Rubio et al. corresponding segmerdg ; 8i 2 Gc:We represent eac
proposed a method based on rst establishing correspon-2S & binary indicator function on image, indicating the
dences between regions in the images, and then estimatin§Pcation of object(s) of classin imagei, and call these the
the appearance distributions of both the foreground and the>gmentation functions

background for better joint segmentatiori].

Image co-segmentation with multiple objects has only
been explored in the last few years. To handle multiple  Following the work of Wang et al.”[J)] we assume that
object classes, Kim et al.8] model the segmentation each imagd; = (P;;E) is represented by the dual graph
task as temperature maximization on anisotropic heat d-of its super-pixel decomposition. We use the normalized cut
iffusion. The submodular property of the formulation algorithm [L7] to compute the decomposition and set=
guarantees a constant factor approximation to the optimal200to be the number of superpixels in all the experiments.
solution. Joulin et al. propose an effective energy-basedFunctional Space and Segmentation Functions. The
objective that combines a spectral-clustering term with a key concept of the functional map framework is to equip
discriminative one, allowing the objective to be optimized each image; with a linear functional spac&;. Here
using an ef cient expectation-minimization algorithm] [ we considerF; to be the space of functions, which are
Both works can handle multiple object classes; however, piecewise constant on each super-pixel. Thus, for an image
they still assume that all objects appear in each image,with m super-pixels=; = R™. Moreover, following p(]
which is not realistic in many applications. To segment we approximateF; by only considering the subspaée
images containing an unknown subset of objects, Kim et spanned by the rsK = 30 eigenvectors of the normalized
al. proposed to alternate between foreground modeling andcut Laplacian matrist ;. We use these eigenvectors as the
region assignment stepd]] The foreground modeling step  standard basis, and encode edcl2 F; as a vector of
learns the appearance models of the foregrounds and theoef cientsf 2 RX. Note that in the remainder of this
background, and the region assignment step is formulatedpaper, we will project any function in the original space
as welfare maximization in a combinatorial auction. Fi- f 2 F; into this reduced spade2 F;.
nally, Li et al. generate unknown object-like proposals by Functional Maps. A functional map between imagées
ensemble clustering and solve the cosegmentation problenandl; is a linear mapX : F; ! F ;. In the remainder
by a multi-label energy minimization.[]. of this paper, we will use bold fack j to denote the

2.1. Functional Map Representation
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Figure 1. The pipeline of the proposed image co-segmentation framework. Our method begins by computing consistent functional maps
between similar input images. Given the optimized functional maps, it extracts for each class an initial seed set of images and the
corresponding segmentation functions. It then alternates between jointly optimizing the segmentation functions and using the optimized
segmentation functions to re ne and extend the image set associated with each class.

matrix representation of;; in the standard basis associated age). This stage alternates between a combinatorial phase,
with F; andF;. As demonstrated in the single-class co- which determines the existence of each object in each im-
segmentation workZ], high-quality functional maps can age, and a continuous phase to estimate their locations, by
be computed using linear constraints ¥ that enforce  jointly optimizing the segmentation functions. Speci cally,
descriptor preservation across pairs of images, and globathe combinatorial phase begins with initializing a few seed
consistency constraints on the entire collection of mapsimages for each class, and then gradually augments the
re ecting the presence of a shared object. images contained in each class during successive iterations.
In the case of multiple object classes, it is not reasonableThe objective function in the continuous phase considers
to expect globally consistent functional maps. Therefore, the saliency of each segmentation function, the mutual ex-
we adapt the formulation ir2[]] to the setting where only  clusiveness of different segmentation functions on the same
subsets of maps are consistent, which is signi cantly more image, as well as the consistency between segmentation
challenging both conceptually and algorithmically. We also functions of the same class and the optimized functional
show how the segmentation functions can be optimized formaps. We show how to effectively optimize the induced

and diffused to only appropriate subsets of images. segmentation functions via alternating optimization.

2.2. Approach overview 3. Consistent Functional Maps Among a Het-
The proposed joint image co-segmentation technique erogenous Image Collection

consists of two major stages (Fi), as summarized below. In the rst stage of our pipeline, we estimate the func-

Consistent partial functional maps. We extend the con-  tional mapsX;; between certain pairs of images in our col-

sistent functional map framework of Wang et ai(] to lection, connecting them into a network. Since the number

handle the case where there exist only partial similarities of input images can be large, computing functional maps
between images in terms of shared objects. We introducebetween all pairs of images is computationally expensive.
a formulation that utilizes both continuous and discrete Furthermore, for dissimilar images, estimated functional
latent variables to model partial similarities and show how maps can be noisy and may pollute the network. Therefore,
to optimize the induced objective function via two-level we connect each image with itsnearest neighbors (we
alternating optimizations. usek = 30) in terms of the GIST descriptori}] to form
Segmentation function optimization.Given the optimized  a similarity graphG, and only compute functional maps
functional maps between pairs of images, we proceed toalong the edges d@. In the following, we rst describe the
extract consistent segmentation functions (multiple per im- formulation, and then show how to solve the optimization



(4) in the least square sense:

X
fcons= kX i Yi Y I:)ia(:*](zi)k2

(i )2E

X

+ kY; YDiag(zi)k?; (5)
i=1
. where =100 and = 10 for all experiments. To ease the
~ 20, where we force each functional map 10 gptimization,z; are relaxed so th& z; 1.
agrees with image descriptors and to transfer functions of romulation. Combiningf pair andf cons We write down the

similar frequencies: following optimization problem for optimizing consistent
functional maps

fpar= kKX jDi Djki+ kX i jXjki; (1) X

fXZg=argmin  feonst f oai 6
whereD; 2 RKX 367 stacks the image descriptor2Q] i 9 g)’(i,- cone (i )2E Pt ©)
(e.g:, color, Bow) from |mage._; i isthe d_|agonal matrix 3.2. Optimization
of eigenvalues of the normalized Laplacian on the super-
pixel graphs of imagek ; in our experiments = 100. Equation6 is not convex, however, the special structure
Consistency term.To enforce the consistency of functional in the objective function allows us to effectively optimize
maps, we introducé = 100 latent functiond ;; L it via alternating optimization. In other words, we alternate

that are shared by the input images, and formulate thebetween optimizing each type of parameter so that in each
consistency term so that pair-wise functional maps link cor- iteration we solve a much easier sub-optimization problem.
responding latent functions on each image. In the presencdnitializing the variables. We begin by optimizing the

of partial similarity, the technical challenge is to model the functional maps between pairs of images by dropping the
fact that each latent function may only appear in a subsetconsistency term. This amounts to estimating a standard
of images. To address this issue, we introduce for eachpair-wise functional map, which is convex and can be

imagel; a discrete latent variable = fz; 2 f 0;1g; 1 solved by CVX:

| Lgand a continuous variabl; = (y;1; ;Y )-

The discrete variables encode the association between th& ; =argmin kX j Di Djki+ kX i ;X K&:

latent functions and input images, i.;, = 1 if and only X @

if f, appears onl;. The continuous variables encode the .

Iatelnt functions on each image, i.g;, is the corresponding The initial value ofz; = 1T.' After that, we x X and
function of f; on imagel;. Note that ifzy = 0, then Z;j to optimizeY ;. As described in70], this amounts to

yi simply corresponds to the zero functiOn It is clear compute the top eigenvectors of a sparse matrix.

that that these two latent variables satisfy the following OPtimizing Latent functions Yi;1 i N. We rst
constraint: x the indicator vectorsz; and functional mapX j and

optimize the latent function¥ ;1 [ N. In this
case, the objective function is quadraticYn, and thus
the technical challenge is to enforce the orthornormality
constraintY 'Y = |_. To address this issue, we employ
a standard optimization-on-manifold strategy. Speci cally,
given the current value of , we seek a displacement of
YTY = I (3) dY to minimize the objective functiordY is forced to lie
within the tangent plane &t , i.e., itsatisesY ' (dY ) = 0.
In other words, the vectors that stack each set of correspondsince the objective function is quadratic in the variables,
ing latent functions are orthogonal with each other. this leads to solving a linear system. After obtaining the
Using these latent functions, we model the consistencyoptima| value ofY # Y + dY, we projectY back onto

Y iDiag(zi) = Yi: (2

To model the independence among latent functions, we
introduce a big matrixy that stacks ther'; in a column
and require that

of pair-wise functional mapX j as: the manifoldy Y = I, . This is done by computing SVD
ofY =U VT andsety # UV .
X Yi=YjDiag(zi); (i;j)2E: (4)  Optimizing indicator vectors z;1 i N. When
the latent functionsy ;; 1 i N and the functional
Intuitively, eachX j links shared functions betwee&h and mapsX i ;(i;j) 2 E are xed, it is easy to see that all
Y; and maps the remaining functions¥n to zero. indicator variables (i.e., elements of the indicator vectors)

The consistency term is formulated to preser8eand are decoupled in the objective function As the objective



k M, and the segmentation functiosg ;i 2 Cy of
the corresponding objects in each image, by optimizing the
following three objectives:

The segmentation functions should be consistent with
the optimized functional maps, i.e.,

X ij Sik Sik » (I,J ) 2G;1 k M: (10)
Note thatsiyx = 0;if i 2 Cy.

The segmentation functions should align with sharp
edges in each image. As i(], this is formulated
using the normalized cut Laplacianas minimizing

siLisk; 8i2C;1 k M: (11)

The segmentation functions for different classes
should be mutually exclusive, i.e.,
20 (e)when sksike 0, 8i2G;1 k&k° M (12
the consistency term E&.is included. The maps optimized with
the proposed consistency term are capable of correctly matching Note that the unknowns include both discrete variables,
similar parts of other images. ie., G:;1 k M and continuous ones, i.e., the
segmentation functionsix ;i 2 C¢;1 Kk K. Thus,
function is quadratic in indicators variables, we can write we deploy an iterative and decoupled optimization strategy.
the optimal value of each indicator variable analytically as Speci cally, we begin by initializing the classes with a
R ) X small set of highly con dent images, and then alternate
zi =argmin  kyy  zyyik®+ kXijyi  ZiYj k® between optimizing the segmentation functions @ignd

0z 1 j2N (i) expanding the sets for each object (B)g.
| | ke o X Yy 4.1. Initialization
=max 0O;min 1; B - .
kyi k2 + ky; k2 To initialize the association§, and segmentation func-
2N () tions six, we solve a relaxed problem, where we only

(8) optimize the mutual exclusiveness of the concatenated seg-
mentation functiorsy = (si);i 2 C¢ of each class, i.e.,

Sik Siko. In this case, to obtain segmentation functions for
each class we minimize the same quadratic form

Optimizing functional maps Xj ;(i;j ) 2 E. When the
latent variablesY i;z;; 1 i N are xed, we can
optimize each pair-wise functional mafy; independently
by solving the following convex optimization problem:

— 1 X 2 T
X7 =argminkX jDi Djki+ kX i XK feeo = jgj  WXusic sicke+ g siclisi
X (i5 )2G i=1
+ kXY Y,;Diag(zi)kZ: (9) = skLsk; (13)

Convergence detection.The alternating optimization de-  using the combined Laplacian matrix and setting =
scribed above is guaranteed to converge to a local optimal10 in this paper. Thus, a reasonable initialization of the

of f . We detect the convergence by checking segmentation functionsisto s&t;1 kM, to be the
KX X PreY rst M smallest eigenvectors af.
max I i 10 3: Given these initial segmentation functiosig;1 i
(i )2E kX i k N;:1 k M, we initialize each sefy as
Typically, the program converges in 8-10 iterations. G = fi: stksk maxks; k=2g:
I

4. Optimizing Consistent Segmentations
P 9 9 This tries to select images for which we have high con -

In this section, we describe how to compute the asso-dence that the corresponding class is present, iag i€y,
ciation between each image and each class, Gg.]l thensiy must have a small magnitude.



17 directly because the term
(sik Sit)? is quartic in the segmentation function coef - 19 prioritizes the agreement
cients. However, the objective functions becomes quadraticwith the induced segmentation functioXs;; sjc from its
if we only optimize the segmentation functions associated nNeighboring images. The second term ensures shat
with each class. This leads to an alternating optimization is orthogonal to existing segmentation functions of other
procedure. Specically, at each step, we optimize the classes on image The third term measures the saliency

segmentation functions associated with class.e., of sik, with respect to the normalized Laplacian matrix
X Li. Since the objective function in quadratic &, its
minimize KX sk Sik k2 optimal value can be obtained using the standard eigen-
Sicl2Ck i VaEL (G C ) decomposition procedure.
X T . \2 T After computing the segmentation functisg , we com-
+ (Sji Sik)“ + Sik LiSik - T .
o | ‘ ' pute the saliency scoig, L sy (agreement with normal-
 ZCriek 12Ck ized cuts). We then include into G if
subject to ksic k? = jGij: (18) _—
_ - Sik Lj Sik
i2Cx Sik LiSik < maX Ti'
j2Ck Sik Sik

This optimization is performed for each class in order. In
practice, we found that the segmentation functions becomewhere we choose a conservative value 1=2 to ensure
stable after 4-5 complete iterations. that we only include the most salient images.



class N [7] [8] [11] Ours
Bike 30| 43.3 299 428 512
Bird 30| 47.7 29.9 - 557
Car 30| 59.7 371 525 729
Cat 241319 244 56 659

_ _ _18]. Itincludes 591 pixelwise Chair 30| 39.6 28.7 39.4 465
labeled images in 23 object classes with one object per Cow 30|527 335 26.1 68.4
class. Images in each class contain a common object Dog 30| 41.8 33.0 - 558
with the similar appearance, e.g., cow, dog, etc. This is Face 30| 70.0 33.2 40.8 60.9
a standard binary segmentation setting, therefore, many Flower 30| 51.9 40.2 - 67.2
existing single-class co-segmentation algorithms are House 30| 51.0 322 664 56.6
applicable. Tablel gives a quantitative comparison with Plane 30| 21.6 251 334 522
[7, 8, 11], and the same classes are selected as reported Sheep 30| 66.3 608 457 72.2

Sign 30| 58.9 43.2 - 591
Tree 30| 67.0 612 559 620
Table 1. Performance of binary segmentation on MSRC.

in [7]. [7] is designed for multi-class segmentation and
[8] and [L1] are state-of-the-art foreground-background
cosegmentation methods. All methods are unsupervised
except for knowing the total number of objects. The

performance is measured by the intersection-over-unioncompletely unsupervised way. In the unsupervised setting,
score which is standard in PASCAL challenges. after obtaining the segmentation functions Kér different

Our method is signi cantly better than the state-of-the- clusters, we need to nd the correspondences between each
art methods in most of the cases. It is interesting to notecluster and each ground truth object. We pick the one-to-
that our method works best for natural objects, such asone matching which maximizes the average accuracy. As
“Cat”, “Cow”, and “Sheep” despite their high appearance can be seen in Tab®; forimage collections with irregularly
variability. Our algorithm performs worse for images with appearing objects, our algorithm can signi cantly improve
very cluttered background (*Face”). The lower accuracy for the performance in most of the classes.
“Bike” and “Chair” is caused by the coarse superpixels.

5.3. Experiments on PASCAL-multi Dataset

5.2. Experiments on FLickr Dataset Besides the standard benchmark datasets, we create a

We then evaluated our proposed method on the publicmore challenging multi-class dataset (“PASCAL-multi”)
multi-class image dataset Flick®][ This dataset consists based on PASCAL VOC 2012 datasé&l.[ Given a pre-
of 14 groups, where each group contains between 10 and 2Gelected set of class labels, a group of images is retrieved
images along with groundtruth pixel-level annotations. We from the PASCAL dataset such that each image only con-
compare our method with other state-of-the-art methods,tains a subset of the pre-selected labels. This can ensure the
including [9, 8, 6, 16] and summarize the comparison in pre-selected classes are the only re-occurring object classes
Table2. For [9], an unsupervised version is applied for a fair in the images. Images with foreground object smaller than
comparison. §], [6] and [16] are applied to each subgroup 0.5% of the total image area are discarded as these objects
of images which share the same foregrounds. On the otheiare not salient. This dataset is much more challenging than
hand, our algorithm is applied to the entire dataset in athe Flickr dataset in5.2due to its larger size and the larger



9 [8 [6] [16 Ours ously. It is straightforward to add supervision information,
Apple 20 6409 326 248 256 46.6 such as image labels or ground truth segmentations of a few
basepall ~ 18 5] 31.0 313 192 161 50.3 images, but we leave that as future work.
Buttery 18 8 | 298 324 295 10.7 54.7
Cheetah 20 5| 321 401 509 419 62.1 7. Acknowledgement
Cow 20 5| 356 438 250 27.2 385
Dog 20 4| 345 350 320 30.6 53.8 Support from ONR MURI N00014-13-1-0341, NSF grants IS
Dolphin 18 3 | 34.0 474 372 30.1 61.2 1016324, CNS 0832820, Marie Curie CIG-334283-HRGP, two
Fishing 18 51203 272 198 183 468 Google faculty research awards, a gift from HTC Corporation,
G_O””a 18 41410 388 411 281 47.8 a grant from the Max Planck Center for Visual Computing and
L;t;(rerr(t% 112 45 gég gég ggg géé gji Communications, and a CNRS chaire d'excellence is gratefully
Stonehenge 20 5| 353 49.3 47.0 32.6 54.6 acknowledged.
Swan 20 3|171 184 143 16.3 465
Thinker 17 4 | 256 344 276 157 68.6 References
Average - - 1313 363 320 251 531 [1] K.-Y. Chang, T.-L. Liu, and S.-H. Lai.  From co-saliency

Table 2. Performance comparison on the Flickr data set.
[2]

class imgNum| Ncut[17] [2] Ours
Bike + person 248 27.3 30.5 40.1 (3]
Boat + person 260 29.3 32.6 446
bottle + dining table 90 37.8 39.5 47.6 4]
bus + car 195 36.3 39.4 49.2
bus + person 243 38.9 41.3 555
chair + dining table 134 32.3 30.8 40.3 [5]
chair + potted plant 115 19.7 19.7 22.3
Cow + person 263 30.5 33.5 45.0 (6]
dog + sofa 217 44.6 42.2 49.6
horse + person 276 27.3 30.8 42.1 7]
potted plant + sofa 119 37.4 37.5 40.7

Table 3. Performance comparison on the PASCAL-multi data set. [8]
object appearance variability.

We compare our framework with baseline methaotig [
and 2]. The number of foreground objects in each image [10]
is provided as a prior for these two baseline methods. The
results are shown in Tab8 we can see that our method is
very robust when dealing with larger dataset and when the[11]
foreground objects are not quite similar.

(9]

(12]

6. Conclusion [13]

In this paper we have proposed a framework for multi-
class joint image segmentation. Unlike the traditional [14]
image co-segmentation task which only has one foreground
object, we deal with images containing a large number of 15
objects, with a variable number of objects from multiple
classes appearing in each image. We have shown aril6]
approach to this problem using the framework of functional
maps and demonstrated how it can be adapted to re ecty;;
partial similarity between images. Based on the optimized
maps, segmentation functions for multiple groups emerge(18]
from the image network, and the group assignment is
updated through a combination of continuous and discretey; g
optimization steps.
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